| COMPARATIVE
FACTORS | AMALGAM | COMPOSITE RESIN (DIRECT AND INDIRECT RESTORATIONS) | GLASS IONOMER CEMENT | RESIN-IONOMER CEMENT | |--|---|--|---|---| | General Description | Self-hardening mixture in varying percentages of liquid mercury and silver-tin alloy powder. | Mixture of powdered glass and plastic
resin; self-hardening or hardened by
exposure to blue light. | Self-hardening mixture of glass and organic acid. | Mixture of glass and resin polymer
and organic acid; self hardening by
exposure to blue light. | | Principal Uses | Fillings; sometimes for replacing portions of broken teeth. | Fillings, inlays, veneers, partial and complete crowns; sometimes for replacing portions of broken teeth. | Small fillings; cementing metal & porcelain/metal crowns, liners, temporary restorations. | Small fillings; cementing metal & porcelain/metal crowns, and liners. | | Resistance to
Further Decay | High; self-sealing characteristic
helps resist recurrent decay; but
recurrent decay around amalgam is
difficult to detect in its early stages. | Moderate; recurrent decay is easily detected in early stages. | Low-Moderate; some resistance to
decay may be imparted through
fluoride release. | Low-Moderate; some resistance to
decay may be imparted through
fluoride release. | | Estimated Durability (permanent teeth) | Durable | Strong, durable. | Non-stress bearing crown cement. | Non-stress bearing crown cement. | | Relative Amount of
Tooth Preserved | Fair; Requires removal of healthy tooth to be mechanically retained; No adhesive bond of amalgam to the tooth. | Excellent; bonds adhesively to healthy enamel and dentin. | Excellent; bonds adhesively to healthy enamel and dentin. | Excellent; bonds adhesively to healthy enamel and dentin. | | Resistance to
Surface Wear | Low Similar to dental enamel;
brittle metal. | May wear slightly faster than dental enamel. | Poor in stress-bearing applications.
Fair in non-stress bearing
applications. | Poor in stress-bearing applications;
Good in non-stress bearing
applications. | | Resistance to
Fracture | Amalgam may fracture under stress;
tooth around filling may fracture
before the amalgam does. | Good resistance to fracture. | Brittle; low resistance to fracture
but not recommended for stress-
bearing restorations. | Tougher than glass ionomer;
recommended for stress-bearing
restorations in adults. | | Resistance to
Leakage | Good; self-sealing by surface
corrosion; margins may chip over
time. | Good if bonded to enamel; may show
leakage over time when bonded to
dentin; Does not corrode. | Moderate; tends to crack over time. | Good; adhesively bonds to resin,
enamel, dentine/post-insertion
expansion may help seal the
margins. | | Resistance to
Occlusal Stress | High; but lack of adhesion may weaken the remaining tooth. | Good to Excellent depending upon product used. | Poor; not recommended for stress-
bearing restorations. | Moderate; not recommended to
restore biting surfaces of adults;
suitable for short-term primary
teeth restorations. | | Toxicity | Generally safe; occasional allergic reactions to metal components. However amalgams contain mercury. Mercury in its elemental form is toxic and as such is listed on prop 65. | Concerns about trace chemical release are not supported by research studies. Safe; no known toxicity documented. Contains some compounds listed on prop 65. | No known incompatibilities. Safe; no known toxicity documented. | No known incompatibilities. Safe; no known toxicity documented. | | Allergic or Adverse
Reactions | Rare; recommended that dentist evaluate patient to rule out metal allergies. | No documentation for allergic reactions was found. | No documentation for allergic reactions was found. Progressive roughening of the surface may predispose to plaque accumulation and periodontal disease. | No known documented allergic reactions; Surface may roughen slightly over time; predisposing to plaque accumulation and periodontal disease if the material contacts the gingival tissue. | | Susceptibility to
Post-Operative
Sensitivity | Minimal; High thermal conductivity may promote temporary sensitivity to hot and cold; Contact with other metals may cause occasional and transient galvanic response. | Moderate; Material is sensitive to
dentist's technique; Material shrinks
slightly when hardened, and a poor
seal may lead to bacterial leakage,
recurrent decay and tooth
hypersensitivity. | Low; material seals well and does not irritate pulp. | Low: material seals well and does not irritate pulp. | | Esthetics
(Appearance) | Very poor. Not tooth colored:
initially silver-gray, gets darker,
becoming black as it corrodes. May
stain teeth dark brown or black over
time. | Excellent; often indistinguishable From natural tooth. | Good; tooth colored, varies in translucency. | Very good; more translucency than glass ionomer. | | | Low; replacement is usually due to
fracture of the filling or the
surrounding tooth. | Low-Moderate; durable material hardens rapidly; some composite materials show more rapid wear than amalgam. Replacement is usually due to marginal leakage. | Moderate; Slowly dissolves in mouth; easily dislodged. | Moderate; more resistant to dissolving than glass ionomer, but less than composite resin. | | Relative Costs to
Patient | Low, relatively inexpensive; actual cost of fillings depends on their size. | Moderate; higher than amalgam fillings; actual cost of fillings depends upon their size; veneers & crowns cost more. | Moderate; similar to composite resin (not used for veneers and crowns). | Moderate; similar to composite resin (not used for veneers and crowns). | | | Single visit (polishing may require a second visit). | Single visit for fillings; 2+ visits for indirect inlays, veneers and crowns. | Single visit. | Single visit. | | COMPARATIVE
FACTORS | PORCELAIN (CERAMIC) | PORCELAIN (FUSED-TO-METAL) | GOLD ALLOYS (NOBLE) | NICKEL OR COBALT-CHROME
(BASE-METAL) ALLOYS | |--|--|---|--|---| | General Description | Glass-like material formed into
fillings and crowns using models of
the prepared teeth. | Glass-like material that is "enameled"
onto metal shells. Used for crowns and
fixed-bridges. | Mixture of gold, copper and other metals used mainly for crowns and fixed bridges. | Mixtures of nickel, chromium. | | Principal Hees | Inlays, veneers, crowns and fixed-
bridges | Crowns and fixed-bridges. | Cast crowns and fixed bridges;
some partial denture frameworks. | Crowns and fixed bridges; most partial denture frameworks. | | Principal Uses | bridges | Crowns and fixed-bridges. | some partial defiture frameworks. | partial defiture frameworks. | | Resistance to
Further Decay | Good, if the restoration fits well. | Good, if the restoration fits well. | Good if the restoration fits well. | Good if the restoration fits well. | | Estimated
Durability
(permanent teeth) | Moderate; Brittle material that may
fracture under high biting forces.
Not recommended for posterior
(molar) teeth. | Very good. Less susceptible to fracture due to the metal substructure. | Excellent. Does not fracture under stress; does not corrode in the mouth. | Excellent. Does not fracture under stress; does not corrode in the mouth. | | Relative Amount of
Tooth Preserved | Good - Moderate. Little removal of
natural tooth is necessary for
veneers; more for crowns since
strength is related to its bulk. | Moderate-High. More tooth must be removed to permit the metal to accompany the porcelain. | Good. A strong material that requires removal of a thin outside layer of the tooth. | Good. A strong material that
requires removal of a thin outside
layer of the tooth.
Harder than natural enamel but | | Resistance to
Surface Wear | Resistant to surface wear; but abrasive to opposing teeth. | Resistant to surface wear; permits
either metal or porcelain on the biting
surface of crowns and bridges. | Similar hardness to natural enamel;
does not abrade opposing teeth. | minimally abrasive to opposing natural teeth. Does not fracture in bulk. | | Resistance to | | | 11 0 | | | Fracture | Poor resistance to fracture. | Porcelain may fracture. | Does not fracture in bulk. | Does not fracture in bulk. | | Resistance to
Leakage | Very good. Can be fabricated for very accurate fit of the margins of the crowns. | Good- Very good depending upon
design of the margins of the crowns. | Very good - Excellent. Can be formed with great precision and can be tightly adapted to the tooth. | Good-Very good - Stiffer than gold;
less adaptable, but can be formed
with great precision. | | Resistance to
Occlusal Stress | Moderate; brittle material susceptible to fracture under biting forces. | Very good. Metal substructure gives high resistance to fracture. | Excellent. | Excellent. | | Toxicity | Excellent. No known adverse effects. | Very Good to Excellent.
Occasional/rare allergy to metal alloys
used. | Excellent; Rare allergy to some alloys. | Good; Nickel allergies are common
among women, although rarely
manifested in dental restorations. | | Allergic or Adverse
Reactions | None. | Rare. Occasional allergy to metal substructures. | Rare; occasional allergic reactions seen in susceptible individuals. | Occasional; infrequent reactions to nickel. | | Susceptibility to Post-Operative Sensitivity | Not material dependent; does not conduct heat and cold well. | Not material dependent; does not conduct heat and cold well. | Conducts heat and cold; may irritate sensitive teeth. | Conducts heat and cold; may irritate sensitive teeth. | | Esthetics
(Appearance) | Excellent. | Good to Excellent. | Poor - yellow metal. | Poor - dark silver metal. | | Frequency of Repair
or Replacement | Varies; depends upon biting forces;
fractures of molar teeth are more
likely than anterior teeth; porcelain
fracture may often be repaired with
composite resin. | Infrequent; porcelain fracture can often
be replaced with composite resin. | Infrequent; replacement is usually due to recurrent decay around margins. | Infrequent; replacement is usually due to recurrent decay around margins. | | Relative Costs to
Patient | High; requires at least two office visits and laboratory services. | High; requires at least two office visits and laboratory services. | High; requires at least two office visits and laboratory services. | High; requires at least two office visits and laboratory services. | | | Tow- minimum; matching esthetics of teeth may require more visits. | Two - minimum; matching esthetics of teeth may require more visits. | Two - minimum. | Two - minimum. |